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Action selection and refinement in subcortical
loops through basal ganglia and cerebellum

J. C. Houk*, C. Bastianen, D. Fansler, A. Fishbach, D. Fraser,

P. J. Reber, S. A. Roy and L. S. Simo

Northwestern University Medical School, Chicago, IL 60208, USA

Subcortical loops through the basal ganglia and the cerebellum form computationally powerful
distributed processing modules (DPMs). This paper relates the computational features of a DPM’s
loop through the basal ganglia to experimental results for two kinds of natural action selection. First,
functional imaging during a serial order recall task was used to study human brain activity during the
selection of sequential actions from working memory. Second, microelectrode recordings from
monkeys trained in a step-tracking task were used to study the natural selection of corrective
submovements. Our DPM-based model assisted in the interpretation of puzzling data from both of
these experiments. We come to posit that the many loops through the basal ganglia each regulate the
embodiment of pattern formation in a given area of cerebral cortex. This operation serves to
instantiate different kinds of action (or thought) mediated by different areas of cerebral cortex. We
then use our findings to formulate a model of the aetiology of schizophrenia.

Keywords: modularity; serial order; pattern classification; error correction; schizophrenia;
presynaptic inhibition

1. INTRODUCTION
The higher-order circuitry of the brain comprises a large-
scale network of cerebral cortical areas that are
individually regulated by loops through subcortical
structures, particularly through the basal ganglia and
the cerebellum (Houk & Wise 1995; Kelly and Strick
2003, 2004). These subcortical loops form distributed
processing modules (DPMs) that have powerful compu-
tational architectures (figure 1; Houk 2005). The final
outcome of all of the computations in a given DPM is a
spatio-temporal pattern of activity in the module’s
output vector, representing the activity in its set of
cortical output neurons. This allows a given DPM to
participate in the computations taking place in other
areas of cerebral cortex or in the brainstemor spinal cord.

The loop through the basal ganglia is thought to
regulate the selection and/or initiation of pattern
formation (Houk & Wise 1995; Redgrave et al. 1999;
Gurney et al. 2001; Houk 2001, 2005). The term
embodiment is used in figure 1 to capture both
possibilities, i.e. selection and initiation, the former
occurring when disinhibition allows other cortical
inputs to initiate and the latter when the selection is
strong and does its own initiation. Embodiment is
critically dependent on the refined, neuromodulated
pattern classification operations that take place in the
input layer of the basal ganglia, the striatum (Gruber
et al. 2003). According to most contemporary models,

bursts of striatal spiny neurons, via the direct pathway
through the basal ganglia, disinhibit their targets in
thalamus, allowing thalamo-cortical loops to embody
patterns of activity that represent a ballpark estimate of
an action or a thought. There are also mechanisms, via
less direct pathways through the basal ganglia, for
inhibiting the embodiment of patterns that would
represent poor choices in action selection (Houk &
Wise 1995; Gurney et al. 2001).

Once a tentative pattern has been selected and
initiated through the operation of the loops through the
basal ganglia, the loops through the cerebellum amplify
and sculpt that pattern into a refined output vector
(Houk & Mugnaini 2003). The amplification step
appears to be implemented by the loop through the
cerebellar nuclei. Regenerative positive feedback in this
loop amplifies the output’s intensity, duration and
spatial extent. The restraint of this amplification
process and, more importantly, sculpting it into an
accurate representation of an action (or thought) is
implemented by the loop through the cerebellar cortex.
The cerebellar cortex is considered to be an exceptional
neuronal architecture for learning difficult compu-
tations (Raymond et al. 1996; Houk & Mugnaini
2003) and so is well suited to this refinement task.

We will relate the computational features of DPMs
to experimental results for two kinds of natural action
selection. First, functional imaging during a serial order
recall task will be used to study human brain activity
during the selection of sequential actions from working
memory. Second, microelectrode recordings from
monkeys trained in a step-tracking task will be used
to study the natural selection of corrective submove-
ments. Our DPM-based model assists in the interpre-
tation of puzzling data from both of these experiments.
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We come to posit that the many loops through the basal
ganglia regulate the embodiment of pattern formation
in a given area of cerebral cortex. This operation serves
to instantiate different kinds of action (or thought)
mediated by different areas of the cerebral cortex.

2. SERIAL ORDER PROCESSING
Tasks in which lists of items are presented, after which
the subject is required to recall the items in the same
order in which they were presented, require serial order
processing and sequential action selection. Here, we
introduce a task dubbed Replicate without intending to
identify novel behavioural phenomena. Instead, we
aspire to establish a task paradigm that elicits many
standard patterns of serial recall behaviour, but which
also can be conveniently applied across research
modalities and, in particular, across species. Bench-
mark properties of serial order recall include (i) a
graded decline in recall accuracy with sequence length,
(ii) transposition gradients reflecting a tendency for
items to be recalled at serial positions near to their
original positions, and (iii) item similarity effects
including (a) a tendency for items to be recalled near
the item where they originally appeared and (b) a
tendency for sequences of similar items to be recalled
less accurately than sequences of less similar items
(Botvinick & Plaut 2006).

(a) The Replicate task
In Replicate, K targets are presented on an N!N grid
of squares in a randomized sequence, and the subjects
are required to remember their positions and serial
order over a brief delay. The subjects are then cued to
use a joystick to move a cursor to the K positions in the
same order in which they were originally presented.
The phase of target presentation requires the setting up
of a working memory representation, which must be
sustained through the delay and then decoded in order
to produce correct joystick movements; we thus refer to
the three phases of the task as the encoding,
maintenance and decoding phases.

Behavioural studies with Replicate confirm that the
task generates several standard patterns of recall
behaviour. Thirty-two Replicate trials were performed,
eight at each of four sequence lengths (three to six for
one half of the subjects and four to seven for the other
half). Each trial was initiated by the subject using
the joystick to move a cursor into the central tile in a

5!5 grid. A target sequence then appeared, with each
target location illuminated for a total of 500 ms.
Following a 10 s delay, the joystick cursor changed
colour, cuing the subject to replicate the target
sequence, returning to the central tile when finished.
Amaximum of 3 s was allotted for identification of each
location. Our error analysis demonstrates that the
Replicate task yields the typical visual memory span of
four to five items, and that errors frequently involve
(i) transpositions of items located near to one another in
the sequence and/or (ii) substitution of a location target
with a nearby location in the grid. These results
demonstrate that Replicate has several benchmark
properties of serial order recall that have been studied
with lists of more cognitive items.

(b) Functional neuroimaging of Replicate
For our brain imaging study, we employed a control
task referred to as Chase. In Chase, a sequence of
location cues appears just as in Replicate, but subjects
use the joystick to track these cues immediately as they
appear. Chase involves similar stimulus and response
sequences to Replicate but eliminates the working
memory component.

Brain functional neuroimaging (fMRI) activity of
subjects performing Replicate utilized two primary
blood-oxygen-level-dependent (BOLD) contrasts. An
Execute contrast was made between the period of
sensory-guided joystick movements in the Chase task
and a rest period. This contrast was designed to show
the neural correlates of motor execution. A Decode
contrast was made between the memory-guided move-
ment period of the Replicate task and the sensory-
guided movement period of the Chase task. This
contrast was designed to reveal the neural correlates of
the decoding process while simultaneously controlling
for BOLD activity related to pure motor execution.
Whole-brain echo planar imaging data (24 6 mm slices,
TRZ2000 ms) were collected from 10 subjects, and a
partial-brain scanning protocol focusing on the basal
ganglia (12 6 mm slices, TRZ1000 ms) was used for 9
subjects.

In the participants who provided whole-brain data,
reliable decoding activity was observed in the right
prefrontal (PF) cortex, left anterior cingulate, left
supplementary motor area and portions of cerebellum.
Activity related to the execution of joystick movements
was observed in the contralateral primary motor cortex,
contralateral putamen and ipsilateral cerebellar cortex.

pattern
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basal ganglia

embodiment

reward propensity

pattern
formation

cerebral
cortex

amplification

cerebellum
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error
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Figure 1. The abstract signal processing operations posited (Houk 2005) for each DPM.Net excitatory pathways are shownwith
closed arrows, net inhibitory pathways with open arrows and the grey diamonds signify neuromodulatory and training inputs.
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The partial-brain imaging protocol provided better
sensitivity to changes within the striatum of the basal
ganglia. The differential BOLD activities in the right
and left caudate and putamen were strikingly different
for the Execute and Decode contrasts (figure 2). A
significant increase in activity was found in the putamen
for Execute, whereas a significant decrease in activity
was found in the caudate nucleus for Decode. The
deactivation representing a statistically significant
decrease in blood flow in caudate during the decoding
operation was puzzling. Brain processing is believed to
require increased synaptic activity, which recruits
increased metabolism and blood flow, as detected by
an increase in BOLD signal (Logothetis 2002).

Decreases in BOLD are considered mysterious
(Gusnard & Raichle 2001) and are usually explained
by greater synaptic processing in the control task as
opposed to the main task. In our Decode contrast, this
could happen if caudate were actively engaged in the
sensory-guided control task Chase, due to the presence
of visual targets for each movement of the joystick.
However, figure 2 indicates that caudate is not
particularly active in the Execute contrast. The
statistically significant decrease in BOLD for the
Decode contrast seems to need a better explanation.

(c) Action selection in the loop through
the basal ganglia
Although many authors have suggested that the loop
through the basal ganglia plays an important role in
action selection, there are diverse views concerning the
mechanism by which this might occur. Most authors
agree that action selection occurs in the input nucleus
of the basal ganglia loop, namely the striatum (but see
Rubchinsky et al. 2003). There are different views
about the mechanisms for preventing actions, which
will not be discussed here.

The dorsal part of the striatum, the neostriatum,
comprises two divisions, the caudate nucleus and the
putamen. The principal neurons of both the caudate
and the putamen, the medium spiny neurons, are

inhibitory GABAergic projection neurons. They emit
an elaborate array of collaterals to neighbouring spiny
neurons before they project to output stages of the basal
ganglia, namely to either globus pallidus or substantia
nigra pars reticulata. Figure 3a shows two of these spiny
neurons with collaterals that inhibit each other and
gives rise to an inhibitory feedback network entirely
within the neostriatum. This local feedback network
mediates a competitive pattern classification operation.
Collateral inhibition is deemed an effective mechanism
for competition by some authors (Plenz 2003) and
ineffective by others, the latter believing that feed-
forward inhibition regulates the pattern classification
operation (Tepper et al. 2004). Beiser & Houk (1998)
modelled both mechanisms and found that they
worked, but the inhibitory feedback network worked
more effectively than the feed-forward network.

What has not been considered to date is the
possibility that the inhibitory feedback network relies
on presynaptic, as opposed to postsynaptic, inhibition.
This is surprising since presynaptic inhibition of
cortical input to the neostriatum has been demon-
strated electrophysiologically (Calabresi et al. 1991;
Nisenbaum et al. 1993) and morphologically (Lacey
et al. 2005). Indeed, the operation of a presynaptic
mechanism for collateral inhibition could also explain
the mysterious fMRI BOLD deactivation that we found
in caudate for the Decode contrast (figure 2). Synaptic
input is believed to be a strong contributor to BOLD
signals (Arbib et al. 2000; Logothetis 2002). Since
presynaptic inhibition would decrease synaptic input
that could explain the deactivation for caudate. The
activation seen for putamen presumably results from a
greater dependence on postsynaptic inhibition. The
cause for this difference might relate to phylogeny. The
DPM that operates on working memories via a loop
through the caudate nucleus (Kelly & Strick 2004) is
phylogenetically newer than the loop through the
putamen to and from the primary motor cortex
(M1). The latter, namely the M1-DPM, generates
the voluntary motor commands that control the
individual movements.

(d) Model of competitive pattern classification
Presynaptic inhibition should give rise to a computa-
tionally powerful mechanism for pattern classification.
Beiser & Houk (1998) found that, since the equili-
brium potential for postsynaptic GABAergic inhibition
(ECl in figure 3b) is between the down- and up-state of
spiny neurons, this mechanism for mediating compe-
tition between neighbouring spiny neurons is quite
sensitive to spontaneous membrane potential and to
model parameters. It performed better than feed-
forward inhibition, but it was not optimal. Presynaptic
inhibition has no equilibrium potential—it just reduces
the synaptic input regardless of the membrane potential
of the spiny neuron (figure 3b). This presynaptic
advantage reflects a qualitative principled effect that
should be robust to parameter selection.

We modelled a minimal network of recurrent loops
from cortex through basal ganglia and back to cortex
that encodes the serial order of two visual cues, A and B
(figure 4). The reader is also referred to the ‘implemen-
tation details’ posted in the electronic supplementary
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Figure 2. Differential BOLD activity in the right and left
head of the caudate and putamen for the Decode (grey) and
Execute (black) contrasts. Error bars indicate standard error.
! indicates a significant difference (t(8)R2.36, p!0.05),
while !! indicates a highly significant difference (t(8)R4.16,
p!0.01). A decrease in activity was found in the caudate
nucleus for decoding, whereas a significant increase in activity
was found in the putamen for execution. Deactivation
representing a statistically significant decrease in blood flow
in caudate for the Decode contrast was surprising.
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material of this paper. Recurrent loops in the direct
pathway through the prefrontal (PF) cortex, caudate
(CD) nucleus, globus pallidus pars internus (GPi) and
thalamus (T) are used to encode two visual cues, A
and B. Computational units AB and BA are labelled for
the sequence they respond to the best, whereas Ax (Bx)
is activated by A (B) independent of its serial order.
Prefrontal cortex projections are excitatory, with
synaptic weights represented by dot sizes. Caudate
spiny units are interconnected by inhibitory collaterals
to form a competitive network (not explicitly shown in
figure 4). Via their projections, CD units are inhibitory
to GPi units. The high spontaneous activity of GPi
units provides a tonic inhibitory background to
thalamus, and inhibition of this background activity
provokes a disinhibition of thalamic units. Rebound
activity of thalamic units starts positive feedback and

(a)

(b)
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0

excitatory synaptic input

membrane potential
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(c) caudate membrane potentials with A–B stimulus
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Figure 3. Competitive pattern classification between spiny
neurons in the neostriatum. (a) Dendrites (above) and
projection axons (below) of two spiny neurons. Two synaptic
inputs from the cerebral cortex are illustrated. In the middle
are two inhibitory collaterals. Note that one collateral inhibits
a dendrite to mediate postsynaptic inhibition, whereas the
other inhibits a synaptic terminal to mediate presynaptic
inhibition. (b) Schematic illustration of why competition
mediated by presynaptic inhibition is more effective than
competition mediated by postsynaptic inhibition. The two
time plots show net excitatory synaptic input (gs) from cortex
and membrane potential (Vm) of a spiny neuron as the
cortical input slowly increases (between the two vertical
dashed lines). In the absence of synaptic input, Vm is near the
potassium equilibrium potential EK. As synaptic input gs
increases, Vm moves in the positive direction in a sigmoidal
fashion (typical of a down- to up-state transition). The
upward arrows indicate times of GABA release from
inhibitory collaterals. The open arrows illustrate how
postsynaptic inhibition actually depolarizes (excites) spiny
neurons that are in the down-state and only mediates
shunting inhibition when Vm is at the chloride equilibrium
potential ECl. The downward closed arrows show that
presynaptic inhibition always decreases membrane potential
(inhibits) and therefore is qualitatively more effective than

postsynaptic inhibition. (c) Membrane potential responses of
two model spiny neurons in response to stimulus A followed
by stimulus B. The AB neuron responds strongly when B is
delivered after A. The effect of presynaptic inhibition is shown
by the suppression (arrow) of the BA neuron membrane
potential. It is produced by collateral inhibition from unit A in
figure 4, which fires in response to stimulus A (figure 5).
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Figure 4. Serial order encoding network. Recurrent loops in
the direct pathway through the prefrontal (PF) cortex,
caudate (CD) nucleus, globus pallidus pars internus (GPi)
and thalamus (T) are used to encode two visual cues, A
and B. Computational units AB and BA are labelled for the
sequence they respond to the best; Ax (Bx) is activated by A
(B) independent of its serial order. Prefrontal cortex
projections are excitatory, with synaptic weights represented
by dot sizes. Caudate spiny units are interconnected by
inhibitory collaterals to form a competitive network (not
explicitly shown). Caudate units are inhibitory to GPi units,
which in turn inhibit thalamic units. This disinhibition
activates thalamic units and interconnected PF Cortex
units. The loop is completed by reciprocal excitatory
connections between thalamus and cortex.
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sustained activity in the reciprocal excitatory pathway
between thalamus and cortex.

Spiny neurons were simulated using a minimal
biophysical model (Gruber et al. 2003) with excitatory
and postsynaptic inhibitory conductance inputs.
Presynaptic inhibition was modelled by dynamically
decreasing the excitatory synaptic weights of the input
from PF cortex. The GPi–T–PF loop was abstractly
modelled based upon the Beiser & Houk model (1998)
with a sigmoidal function to transform membrane
potentials into firing rates. The network was instan-
tiated using either no inhibition, presynaptic inhibition
or postsynaptic inhibition in caudate, and the model
was then subjected to noise. The response to a
sequence of A followed by B with zero noise is
illustrated in figure 5. The effect of presynaptic
inhibition can be appreciated in figure 3c which
shows model membrane potentials of the AB and BA
caudate spiny neurons designated in figure 4. The AB
neuron is partially excited by Ax, the memory of A, and
partially by B, thus strongly by the sequence AB. The
BA neuron begins to be excited by stimulus A but then
is suppressed by lateral presynaptic inhibition from
other spiny neurons. A misclassification error in the
illustrated example (in the presence of noise) would be
firing of the BA neuron in PF cortex.

Presynaptic inhibition yielded improved noise toler-
ance and decreased energy requirements compared

with postsynaptic inhibition. When the network was
subjected to noisy inputs, the misclassification rate
without inhibition was 54.6% but fell to 24.1% for
postsynaptic inhibition and 19.4% for presynaptic
inhibition (4.8% decrease with presynaptic versus
postsynaptic inhibition, p!0.001). Presynaptic inhi-
bition also decreased the summed magnitude of
synaptic activity in caudate from 118 to 98.0
(difference of K16.9%, p!0.001). The decreased
excitatory synaptic activity in the presence of pre-
synaptic inhibition can account for the reduced fMRI
BOLD signal seen in caudate during the decoding
contrast that was illustrated in figure 2.

3. EMBODIMENT OF CORRECTIVE
SUBMOVEMENTS
Tracking movements that require both speed and
accuracy consist of a primary movement that is often
off-target, inwhich case it is accompanied byone ormore
corrective submovements inman (Novak et al.2002) and
monkey (Fishbach et al. 2005). The corrective submove-
ments often occur before the primary movement is
completed,which suggests that the neural control system
uses a forward model to predict the movement endpoint
based on a copy of the neural command (efference copy)
anddelayed sensory feedback.Themethods fordetecting
submovements are described in Novak et al. (2000) and
Fishbach et al. (2005).
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Figure 5. Response to the stimulus A followed by B using
presynaptic inhibition in caudate. Firing rates in caudate and
prefrontal cortex are depicted. With reference to figure 4,
inhibitory input from caudate units causes tonically active
GPi units to hyperpolarize and pause, producing rebound
responses in thalamic units. The respective prefrontal cortical
units are then activated and sustained by positive feedback
between thalamic and prefrontal units.
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Figure 6. Segmented movements of a monkey and associated
bursts of discharge in primary motor cortex. (a) The firing
pattern of a motor cortical neuron during a trial that contains
a delayed submovement. (b) The firing pattern of another
motor cortical cell during a trial that contains an overlapping
submovement. The motor cortical neurons each show two
bursts of discharge, which are depicted by upward deflections
in the green CUSUM traces.
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Examples of a delayed and an overlapping submove-
ment (OSM) together with the simultaneously
recorded firing patterns of two neurons in the primary
motor cortex (M1) are illustrated in figure 6a,b. In this
task, the monkey turns a rotating handle to move a
cursor horizontally on a screen (blue trace, position;
red trace, velocity) to acquire a target (blue boxes). The
individual spikes are represented by the vertical green
lines at the top of figure 6a,b. The baseline-rate
normalized cumulative sum histogram (CUSUM)
(cf. Gibson et al. 1985) for both M1 neurons, shown
by the green traces, marks the bursts of discharge with
upward deflections. The first burst is large and occurs
prior to the primary movements. The second burst is
smaller and precedes the delayed corrective submove-
ment (DSM) as shown in figure 6a and precedes the
OSM as shown in figure 6b. We conclude that these
neurons transmit motor commands that control both
primary movements and corrective submovements.

(a) Abstract model of how corrective
submovements are generated
Whether the update of motor commands is continuous
or intermittent is still under debate. Our findings from
a statistical analysis of the properties of submovements
under conditions in which perturbations of target
location were introduced at movement onset strongly
support the hypothesis that the neural controller
predicts the need for a correction and selects an
appropriate one intermittently (Fishbach et al. 2007).

Our model of this action selection process is
illustrated schematically in figure 7. Vision provides
the information about the desired endpoint, which can
be updated as rapidly as 180 ms when a visual
perturbation is introduced at movement onset.
The brain computes the predicted endpoint based on
efference copy and sensory input, and it computes the
prediction variance based on past experience. The
normalized predicted error (Z-score) must exceed a
threshold value T in order to initiate a corrective
submovement. The executed submovement follows an
approximately bell-shaped velocity profile.

(b) Single-cell recordings from the basal
ganglia in monkeys
In order to study how the basal ganglia participate in
the embodiment of M1 commands for movements and
submovements, we recorded from basal ganglia output
neurons in monkeys that had been trained in the same

one-dimensional step-tracking task described above.
Since the output cells in GPi of the basal ganglia
project, via thalamus, to many different areas in the
cerebral cortex, neurons need to be sampled from the
region of GPi that projects to the primary motor cortex
(Roy et al. 2003). The sampled neurons should also be
the ones that are well related to the task. Figure 8 is an
example from our ongoing work that meets both of
these criteria.

The extracellular recording of the GPi neuron
illustrated in figure 8 shows the typical high spon-
taneous discharge rate mentioned in §2d. Its firing rate
is modulated in association with both the primary
movement and with an OSM and a DSM which
occurred in this particular trial (see the red velocity
trace in figure 8 and compare this neuron with the
motor cortical neurons illustrated in figure 6). The
CUSUM (green trace) clearly shows three pauses in
the high tonic firing rate. Pause 1 is small and occurs
prior to the primary movement; pauses 2 and 3 precede
tiny corrective submovements.

Figure 9 demonstrates the reliability of the single
trial properties illustrated in figure 8. The average firing
rate of the cell is shown for all trials that contained a
single corrective submovement (blue trace) and for
trials containing multiple corrective submovements
(red trace). Both traces are aligned to the onset of the
first submovement. Note that the pauses corresponding
to the corrective submovements are as strong as or
stronger than the pause for the primary movement,
even though the corrections which they appear to
control are typically much smaller than is the primary
movement. These discrepant amplitude relationships
in the firing rate data are puzzling. Motor cortex units
show smaller bursts for the small corrective movements
than for the larger primary movements (figure 6).

(c) Interpretation of the puzzling firing rate data
The DPM model posits that practice in a task allows
regularly rehearsed processing steps to be exported
from the basal ganglia and/or cerebellum to the area of
cerebral cortex to which the channel projects (Houk &
Wise 1995; Houk 2005). The control of primary
movements can be exported to the motor cortex since
they are rehearsed in every trial. In contrast, the
corrective submovements vary substantially from trial
to trial, so nothing regular is rehearsed. This model of
knowledge transfer from the basal ganglia to the
cerebral cortex is supported by combined recordings
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Figure 7. An abstract model of how corrective submovements are generated. Vision provides the information about the desired
endpoint, which can be updated as rapidly as 180 ms when a visual perturbation is introduced at movement onset. The brain
uses a forward model to compute the predicted endpoint based on efference copy and sensory input, and it computes
the prediction variance based on past experience. The normalized predicted error (Z-score) must exceed a threshold value T in
order to initiate a corrective submovement. The executed submovement follows an approximately bell-shaped velocity profile.
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of single cell activity from the neostriatum and frontal
cortex (Brasted & Wise 2004; Pasupathy & Miller
2005). It is also supported by Frank’s (2005)
simulations of dopamine modulation in the basal
ganglia and by imaging data (Toni et al. 2002).

4. DISCUSSION
Comprehension of brain dynamics may require an
understanding of the assembly language of the brain, its
machine language so to speak. The model used here
(Houk 2005) assumes that the brain’s assembly
language is the firing rate of its individual neurons.
The output of each DPM is a vector of firing rates in its
population of output neurons. Although population
discharge contains some information in addition to its
rate code, due to the tendency for population activity to
become synchronized, the evidence that synchroniza-
tion is actually used to control actions is meagre (Fetz
1997; Houk 2005; for another view on this see Riehle
et al. 1997). The key issue for us concerns whether or
not there exists a biophysical mechanism for decoding a
synchronicity signal into a selected action. Since thus
far none have been documented, we treated synchro-
nicity as an epiphenomenon and decided to focus our
modelling efforts on firing rate, ignoring the detailed
timing of action potentials. The CUSUM analyses of
single cell discharge illustrated in figures 6 and 8
eliminate variations due to modest synchronization
effects and therefore facilitate our analysis of single trial
data. The analysis of single trial data is quite valuable
since specific behaviour typically varies appreciably
from one trial to the next. One can take advantage of
this variation to test for reliable relations between single
unit activity and behaviour.

(a) Special computational features
of the neostriatum
Our model of action selection is motivated by the
existence of powerful computational features in the
loops through the basal ganglia. The pattern classi-
fication operation shown in figure 1 takes place in the
striatal layer of a DPM. Computationally powerful
pattern classification derives from several unique
features of striatal medium spiny neurons (Houk
2005). These features include (i) a high convergence
ratio (Kincaid et al. 1998) that presents nearly 20 000
different cortical inputs to any given spiny neuron, (ii) a
three-factor learning rule that uses reward-predicting
training signals from dopamine neurons to consolidate
long-term potentiation learning (Houk et al. 1995), (iii)
an attentional neuromodulatory factor (Nicola et al.
2000) that induces bistability and nonlinear amplifi-
cation in spiny neurons (Gruber et al. 2003), and (iv)
competition among spiny neurons mediated by pre-
synaptic and postsynaptic collateral inhibition (§2c,d;
Plenz 2003).

The anatomically demonstrated projections that
loop back to the same area of cortex from which they
derive (Kelly & Strick 2004) allow cortical-basal
ganglionic modules to perform serial order processing
(Beiser & Houk 1998). This feature allows them in
principle to implement immediate serial order recall
from working memories of a sequence. Long-term

memories of serial order could be stored in cortico-
cortical synapses or in the synapses between cortical
neurons and striatal spiny neurons. The latter storage
mechanism is thought to have a larger memory capacity
for salient information (Houk &Wise 1995). The recall
of previously learned sequences should also be efficient
because cortical-basal ganglionic modules implement
parallel searches through a vast repertoire of past
experiences stored in the synapses of spiny neurons.

The DPMs in our model are generic in the sense that
they all execute an identical set of processing
operations, which are summarized in figure 1. A
complete model of the Replicate task described in §2a
requires at least three DPMs. One is needed to encode
the sequence of visual targets into a serial order working
memory. In psychological terms, its output is like a
‘thought’ about an action sequence. Its output vector is
a representation of that thought. A second DPM is
needed to decode the thought into a sequence of
actions. Its output vector could be called a ‘plan’ in
psychological terms, and that DPM’s output vector is a
representation of the plan. A third DPM is required to
generate the set of commands that execute any given
action. Its output vector can be called a ‘command’ in
psychological terms. Much is known about the
representation of voluntary motor commands in M1,
the primary motor cortex (cf. Georgopoulos 1995).

Functional imaging of Replicate reveals activation
patterns in a large network of brain areas (§2b), larger
than the network of DPMs required to model this task.
Psychological name tags for the output vectors in all
these areas are difficult to comeupwith.The point being
made here is that our spoken language starts to fail when
we attempt to give names to all of the signals in large
brain networks. However, we can still talk about the
output vector of any given cortical area—it is the set of
firing rates in that area’s output neurons. Perhaps, we
should begin to explore the use of brain language as an
alternative to psychological terms when we attempt to
describe the operation of large brain networks.

(b) Integrative control by basal ganglia
and cerebellum
The present paper deals mainly with cortical-basal
ganglionic loops, whereas most DPMs also have loops
through cerebellum. Regarding the latter, presently we
know most about signal processing in the loop between
cerebellum andM1, the primarymotor cortex (Houk &
Mugnaini 2003). There are actually two loops in each
cortical-cerebellar module. The one through the
cerebellar nucleus is predominately excitatory and is
responsible for the high firing rates of voluntary
movement commands (Holdefer et al. 2005). This is
the amplification block in figure 1—positive feedback
appears to be responsible for the amplification. The
longer loop through cerebellar cortex uses the strong
inhibitory output from the Purkinje cells to restrain
the positive feedback and, most importantly, to set
the fixed points of this attractor network (Houk &
Mugnaini 2003).

How do cortical-basal ganglionic and cortical-
cerebellar modules work together? Figures 8 and 9
show an example of a GPi neuron in the basal ganglia
helping to select a primary movement and subsequent
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submovements in a tracking task. These pauses will
result in disinhibition of the M1 neurons to which the
GPi neuron, via thalamus, projects, thus facilitating one
or more bursts of discharge. Each of these bursts would
then need to be amplified and refined by the cerebellum.
Amplification in intensity and time would serve to
generate any given element of the M1 output vector in
figure 1, and spatial amplification would recruit the
large population of M1 neurons (additional elements of
that vector) that are required to produce a movement
(Georgopoulos 1995).The cerebellar cortexwould then
restrain and refine the entire M1 output vector, shaping

it into a composite motor command regulating the
direction, velocity and duration of a primary movement
and of the subsequent corrective submovements that
home in on the target. Figure 6 shows examples of two
elements in that output vector.

The abstract engineering operations in figure 7
satisfactorily superimpose on the neurophysiological
operations abstracted in figure 1. With the help of
dopamine neuromodulation, pattern classification in
the neostriatum should be capable of generating the
normalized predicted error in figure 7, utilizing
convergent cortical input reflecting both phasic sensory
and efference copy events, and tonic contextual cues.
The three-factor learning rule in the neostriatum could
have, through prior experience, stored these complex
patterns of cortical activity in corticostriatal synaptic
weights via reinforcement learning. The resultant
output vector from the basal ganglia should then be
able to embody appropriate motor cortical neurons for
starting a movement in approximately the right
direction, thus also initiating positive feedback and
amplification in the loop through cerebellar nucleus.
The Purkinje cells in the cerebellar cortex could then
shape population discharge into an output vector that
commands a reasonable bell-shaped primarymovement
together with the subsequent corrective submovements
that are needed to ensure an accurate overallmovement.

During the course of sensorimotor learning, the
cerebral cortex, basal ganglia and cerebellum work in
parallel but unique ways (Houk & Wise 1995; Lu et al.
1998; Doya 1999). The loop through the basal ganglia
learns to discover ballpark actions that are appropriate
in a given context (Houk 2005), utilizing reinforcement
learning (Sutton & Barto 1998). The loop through the
cerebellum learns to refine the ballpark action through
a simplified form of supervised learning (Berthier et al.
1993). The cerebral cortex, driven by input from basal
ganglia and cerebellum, learns through practice to
perform these operations faster and more accurately,
utilizing unsupervised Hebbian learning (Bliss &
Collinridge 1993; Hua & Houk 1997). The coordi-
nation of these diverse forms of learning has been
simulated by Doya (1999).

(c) Relation to other behavioural
and neuroscientific studies
Our attempt to study the neuroscientific mechanisms
underlying serial order recall interfaces well with
models of considerably more complex forms of serial
order behaviour which are investigated by Botvinick &
Plaut (2006). These authors promoted an activation-
based serial order memory analogous to the one that
appears in the model by Beiser & Houk (1998). There
is a great opportunity for collaboration between
psychology and neuroscience on this forefront.

The cortical-basal ganglionic networks modelled by
O’Reilly & Frank (2006) use the same operational
principles as outlined here. Both are based on an action
selection mechanism located in the striatal input stage
of the basal ganglia, and both use direct and indirect
pathways that loop back to the same cortical area that
provides input to the striatal layer of the model. We
tend to stress an action selection competition that is
more complex than the Go versus No Go competition
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Figure 8. Activity during a single trial of a GPi neuron. In this
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velocity) to acquire a target (blue boxes). The baseline-rate
normalized CUSUM for the neuron (green trace) shows
three downward deflections marking three pauses in the high
tonic discharge rate in this GPi neuron. The first pause (1) is
small and occurs prior to the primary movement; the second
and third are stronger pauses in association with tiny
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which they typically investigate. They are more
interested in modelling a diversity of action selection
tasks, whereas we are more concerned with task designs
that facilitate linkages with the neuroscientific
mechanisms which underlie action selection. These
two approaches are quite complementary and serve to
explore the diversity of linkages to psychology and
neuroscience, which we all wish to achieve.

It seems clear that thebasal ganglia arenot theonly site
in the brain for action selection. For example, Cisek &
Kalaska (2005) are studying spatial reachingdecisions for
which the operation of action selection appears to take
place in the premotor cortex, perhaps with only a little
help fromthebasal ganglia.Wewish todraw analogywith
the diminished role of the basal ganglia in the well-
rehearsed elements of the step-tracking task discussed in
§3 of this paper. Our view concerning this shift is that it is
related to practice. Sensorimotor shortcuts through
cortex could very well develop through practice-related
learning mediated by the two-factor Hebbian learning
rule in the cerebral cortex.

Humphries et al. (2006) seek to understand
mechanisms for action selection that are embodied in
the reticular formation. They plan to investigate how
the reticular formation and the basal ganglia may
interact. One idea that probably warrants consideration
is that actions originally selected by the basal ganglia
are exported to the reticular formation as a result of the
long rehearsal period that begins in the neonate. This
would fit with Swanson’s (2000) claim that all of the
cerebral cortex, including phylogenetically older parts,
have outputs via the basal ganglia which parallel direct
outputs from the cerebral cortex. Exploring the direct
and indirect pathways from the amygdala to the
reticular formation might be worthwhile.

(d) Understanding action selection deficits
in brain disorders
Neurological and psychiatric disorders often target
our capacity for action selection. Computational
models of these decision-making processes offer a
useful approach for investigating the aetiology of a
particular disease and for exploring potential treat-
ments of the deficits. To facilitate this, it is helpful if
the model is capable of bridging from molecular
processes to cellular neurophysiology to systems
neurophysiology to behaviour. This was one of the
motivations for developing the DPM model of mind
agents (Houk 2005).

In another paper of this issue, Frank et al. (2006)
discuss Parkinson’s disease and attention-deficit/hyper-
activity disorder (ADHD) and use computational
models to relate these disorders to decision-making
deficits in a diverse range of tasks. One additional task
that might be considered for this purpose is the serial
order recall task Replicate that was described in §2 of
the present paper. Serial order processing challenges
the capacity for pattern classification in the striatal
input stages of the loops through the basal ganglia.
Simulation studies of Replicate might help to identify
deficits and potential treatments for Parkinson’s disease
and ADHD.

(i) Implications for schizophrenia
A simplified version of the Replicate task has been
studied in patients suffering from schizophrenia (Fraser
et al. 2004). The patients exhibited two prominent
deficits that were anticipated from the existing models:
(i) in line with predictions based on Manoach’s (2003)
capacity model, serial order processing became satu-
rated at three or four items in the list, as contrasted with
the normal capacity of 7G2 (Miller 1956) and (ii) in
line with predictions based on the Beiser & Houk
(1998) network model, targets presented later in the
sequence were remembered most poorly. Both highly
significant deficits were attributed to defective pattern
classification in the caudate nucleus of the basal
ganglia. This interpretation could be tested by imaging
the Replicate task. One prediction to be tested is that
the decrease in caudate blood flow in the Decode
contrast (figure 2) will be attenuated or even reversed in
schizophrenia, assuming that there is a deficit in
GABAb-mediated presynaptic inhibition.

In fact, there is a modified expression of the GABAb
receptor in schizophrenia (Enna & Bowery 2004). This
implicates the modified GABAbR1 gene on chromo-
some 6p21.3 (Martin et al. 2001) as amajor contributor
to schizophrenia. Since the inheritance of schizophrenia
ismultigenic (Freedman et al. 2001), the gene identified
byFreedman,Leonard and collaborators is also strongly
implicated, a gene that causes altered expression of the
alpha-7 nicotinic receptor. This receptor is prevalent in
many of the loops between the cerebral cortex and the
cerebellar nuclei. Altered transmission in these loops is
thought to contribute to the cognitive dysmetria of
schizophrenia (Andreasen 1999).

A central paradox of schizophrenia is that a
condition which is genetic in origin survives in the
population in spite of a fecundity disadvantage. The
magnitude of the latter is such that any genetic
predisposition should be eliminated from the popu-
lation within a few generations. Instead, since the
incidence of schizophrenia remains steady at 1–2%,
there must be an accompanying genetic advantage
(Huxley et al. 1964). In analysing this issue, Kuttner
et al. (1967) offered three potential advantageous
functions that accompany the inheritance of schizo-
phrenia: (i) a capacity for complex social relations,
(ii) intelligence, and (iii) language. Crow and
colleagues have made a strong case for an evolutionary
link between the origin of language and the aetiology of
schizophrenia (Berlim et al. 2003). Their hypothesis is
consistent with the prominent deficit in competitive
pattern classification in schizophrenia mentioned
above—language contains abundant examples of serial
order processing.

How can the model presented here help us to
understand the survival of genes responsible for
schizophrenia? Our model suggests that superior action
selection in the Replicate task results from competitive
pattern classification mediated by the presynaptic
inhibition of excitatory input to the neostriatum from
the cerebral cortex. It is reasonable to assume that
presynaptic inhibition in the caudate nucleus depends
on the GABAbR1 receptor subunit coded by the gene
on chromosome 6p21.3 (Martin et al. 2001). This
could explain the genetic advantage. Schizophrenia
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patients suffer from defective pattern classification in
caudate (Fraser et al. 2004). This could be explained by
occasional (1–2%) malfunctioning variants of the
GABAbR1 receptor subunit associated with unfavour-
able epigenetic expression leading to poor or absent
presynaptic inhibition. As mentioned above, it should
be possible to test this model of the aetiology of
schizophrenia by imaging patients and normal controls.

5. SUMMARY
We posit that both serial order recall and online error
correction are prime examples of natural action
selection. They appear to use analogous mechanisms
for signal processing in their respective DPMs. Models
comprising networks of DPMs may provide a useful
substrate for studying complex behaviours and for
exploring the underlying dynamics of the mind. Such
simulations may help us to understand the aetiology
and treatment of Parkinson’s disease, ADHD and
schizophrenia.
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